40 research outputs found

    RAS-Models: A Building Block for Self-Healing Benchmarks

    Get PDF
    To evaluate the efficacy of self-healing systems a rigorous, objective, quantitative benchmarking methodology is needed. However, developing such a benchmark is a non-trivial task given the many evaluation issues to be resolved, including but not limited to: quantifying the impacts of faults, analyzing various styles of healing (reactive, preventative, proactive), accounting for partially automated healing and accounting for incomplete/imperfect healing. We posit, however,that it is possible to realize a self-healing benchmark using a collection of analytical techniques and practical tools as building blocks. This paper highlights the flexibility of one analytical tool, the Reliability, Availability and Serviceability (RAS) model, and illustrates its power and relevance to the problem of evaluating self-healing mechanisms/systems, when combined with practical tools for fault-injection

    The Role of Reliability, Availability and Serviceability (RAS) Models in the Design and Evaluation of Self-Healing Systems

    Get PDF
    In an idealized scenario, self-healing systems predict, prevent or diagnose problems and take the appropriate actions to mitigate their impact with minimal human intervention. To determine how close we are to reaching this goal we require analytical techniques and practical approaches that allow us to quantify the effectiveness of a system's remediations mechanisms. In this paper we apply analytical techniques based on Reliability, Availability and Serviceability (RAS) models to evaluate individual remediation mechanisms of select system components and their combined effects on the system. We demonstrate the applicability of RAS-models to the evaluation of self-healing systems by using them to analyze various styles of remediations (reactive, preventative etc.), quantify the impact of imperfect remediations, identify sub-optimal (less effective) remediations and quantify the combined effects of all the activated remediations on the system as a whole

    Multi-perspective Evaluation of Self-Healing Systems Using Simple Probabilistic Models

    Get PDF
    Quantifying the efficacy of self-healing systems is a challenging but important task, which has implications for increasing designer, operator and end-user confidence in these systems. During design system architects benefit from tools and techniques that enhance their understanding of the system, allowing them to reason about the tradeoffs of proposed or existing self-healing mechanisms and the overall effectiveness of the system as a result of different mechanism-compositions. At deployment time, system integrators and operators need to understand how the selfhealing mechanisms work and how their operation impacts the system's reliability, availability and serviceability (RAS) in order to cope with any limitations of these mechanisms when the system is placed into production. In this paper we construct an evaluation framework for selfhealing systems around simple, yet powerful, probabilistic models that capture the behavior of the system's selfhealing mechanisms from multiple perspectives (designer, operator, and end-user). We combine these analytical models with runtime fault-injection to study the operation of VM-Rejuv — a virtual machine based rejuvenation scheme for web-application servers. We use the results from the fault-injection experiments and model-analysis to reason about the efficacy of VM-Rejuv, its limitations and strategies for managing/mitigating these limitations in system deployments. Whereas we use VM-Rejuv as the subject of our evaluation in this paper, our main contribution is a practical evaluation approach that can be generalized to other self-healing systems
    corecore